Inhibition of thymidine transport in dnaA mutants of Escherichia coli.
نویسندگان
چکیده
DnaA protein is the initiator of chromosomal DNA replication in Escherichia coli. We report here our evidence that thymidine transport across cytoplasmic membranes in temperature-sensitive dnaA mutants is greatly decreased at a permissive temperature for growth of the mutants. Complementation analysis with a plasmid containing the wild type dnaA gene and P1 phage-mediated transduction confirmed that mutations in the dnaA gene were responsible for the phenotype. A low level of nucleoside transport in the dnaA mutant was specific for thymidine; transport activities for other nucleosides were much the same as those in wild type cells. Membrane vesicles prepared from the dnaA mutant showed much the same activity of thymidine transport as did those from the wild type cells. No significant difference in the activity of thymidine kinase, which is known to facilitate thymidine transport, was seen between the mutant and the wild type cells. An increase in the pool of dTTP, a negative regulator for thymidine kinase, was observed in the dnaA mutant. Based on these observations, we suggest that inhibition of thymidine transport in dnaA mutants is caused by increases in the dTTP pool.
منابع مشابه
Expression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants
AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملExpression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants
AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملDepletion of acidic phospholipids influences chromosomal replication in Escherichia coli
In Escherichia coli, coordinated activation and deactivation of DnaA allows for proper timing of the initiation of chromosomal synthesis at the origin of replication (oriC) and assures initiation occurs once per cell cycle. In vitro, acidic phospholipids reactivate DnaA, and in vivo depletion of acidic phospholipids, results in growth arrest. Growth can be restored by the expression of a mutant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 34 شماره
صفحات -
تاریخ انتشار 1997